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Introduction, Problem statement and objectives



Full time histories are required for engineering purposes like seismic
design and analysis of special structures (e.g.: tall buildings, dams,
bridges etc), fragility analysis and vulnerability assessment.

Use of nonlinear time history analysis, which requires full time series
of ground acceleration, is common tool to assess the post-elastic
dynamic response of a structure.

In regions with sparse ground motion data, and also events with long
return periods: simulations provide alternative acceleration time
series

One important task is to investigate the ability of using simulated
records for estimation of structural demands in earthquake
engineering practice.



Three main issues (by Seismo. Soc. of Amer. 1906):

1. the physical earthquake event itself (when, where, how)

2. the associated ground motions

3. the effect on the structures
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The objective is to investigate the efficiency of simulated ground
motions for earthquake engineering purposes

To fulfill this objective:

Different approaches :

Seismic loss estimation using simulated records for a case study:
Comparison against the results with real records
Prediction of the dynamic responses of detailed MDOF models for
different case studies: Comparison against the results with real
records
Distribution of seismic intensity maps based on simulated records:
Comparison against the results with real records



Ground motion simulation methodology



Objective of Ground Motion Simulations (in General):

To generate realistic ground motions in regions of sparse or
no networks

To study regional parameters through simulations

Methods Existing in the Literature:

Deterministic Methods: Numerical Solutions of Seismic Wave
Propagation, Green’s functions

Stochastic Methods: Point Source and Finite Fault
Hybrid methods
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Stochastic Point-Source Modeling
(Descriptions by Atkinson et al., 2009, BSSA and Boore, 2003)

The shear wave amplitude spectrum in frequency domain is

the product of filter functions representing the source,
propagation and site effects.

Acc(M,, R, f)=Source(M,, f)Path(R, f)Site(f)

The stochastic point-source model assumes that
the earthquake source is concentrated at a point.

Acceleration time series generated at a site carry

both deterministic and random aspects of ground-
motion shaking.
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Finite-Fault Source Models

Figure is adapted from Hisada, 2008, Journal of Seismology
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Stochastic finite-fault (SFF)

methodology using Exsim program
(Introduced by Motazedian and Atkinson, 2005)

Fault is assumed to be a finite rectangular plane and divided into subfaults
Each subfault
Each subfault is assumed to be a point source with an w? spectrum

Ground motions from each subfault are summed with a time delay in order to
obtain the ground motion acceleration from the entire fault as rupture starts

from the hypocenter
nl nw

a(t) = Z Z a;j (t + Aty;)

i=1j=1

Corner frequency of the ijth subfault at any time is a function of the total number of
ruptured subfaults at that time
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Part 1:

Use of simulated records for seismic loss
estimation: A case study for Erzincan (Turkey)
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What are the main steps:

* Ground motion simulations

* Classification of local building stock

 Selection of regional ground motion database

* Generation of fragility curves using simulated GMs
* Estimation of damage

* Results and main findings
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Spatial distribution of the simulated (a) PGA, (b) PGV
values of the 1992 Erzincan earthquake
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Spatial distribution of the simulated (a) PGA, (b) PGV
values of the scenario event Mw=7.0
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Classification of regional building stock

e On site structural classification: 21
odified Ibarra-Medina-Krawinkler Deterioration Model
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Spatial distribution of the RC buildings in the districts
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Spatial distribution of the masonry buildings in the districts
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Selection of ground motions for fragility analyses

e |nput to fragility analyses: a set from the synthetic GM
database

e Ground motions are separated into two groups:
(a)Categorized according to PGV (for RC buildings)
(b)Categorized according to PGA (for Masonry buildings)

e The ground motion intensity levels are subdivided into
20 groups, (APGV=5 cm/s and APGA=0.05g)

e To account for the variability in seismic demand: for each
intensity level, selection of 10 time histories with
different soil conditions, distance, and magnitude values
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Generation of fragility curves
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Spatial distribution of the (a) simulated PGA, (b) simulated PGV, (c) Observed MDR
and (d) Estimated MDR values of the 1992 Erzincan earthquake in the districts
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Spatial distribution of the (a) simulated PGA, (b) simulated PGV and (c) Estimated
MDR values for scenario event of Mw=7.0 in the districts
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Part 2:
Application of simulated records in nonlinear
time history analysis of MDOF structures



Objective

The dynamic response of typical MDOF structures to simulated records of a
particular earthquake in comparison with the response due to the real
records of the same event

To investigate the efficiency of the simulated records in prediction of
nonlinear demands of typical MDOF structures:

Let’s define goodness of fit in terms of engineering demand parameters
(story displacements)

Examination through simulation of :

The 1999 Duzce (Turkey) Earthquake (Mw=7.1)
The 2009 LUAquila (Italy) earthquake (Mw=6.3)

27



Nonlinear time history analyses of MDOF
structures

Time history analysis is a step-by-step analysis of the dynamic
response of a structure under a loading which is a function of time

linear /|nonlinear
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MDOF structures

e Pick 3 model R/C structures (3-5-8 stories)
e Structural Analysis Software: OPENSEES
(Finite Element in space and Newmark-integration in time)

e Fiber based nonlinear beam-column elements

Frame ID | Total Mass (Tons) Fundamental Period (s)
F2-3S2B 226.5 0.71
F6-552B 260.2 0.78
FO-8S3B 1816.1 1.3
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Model Frames

Designed in California
complying with the Uniform
Building Code-1982
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MDOF structures

Concrete Model (Kent-Scott-Park):

$epsl $epsch

$fpcu
dpc

Steel Model:

o
strain
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$Fy ___
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¢ Geometric nonlinearity
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Comparison of seismological misfits vs. NR misfits

o 1 FAS
Misfit _,. = log 2
" f Z I:ASobs
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Misfitrg = — > [log ROsyn
T 1| RSobs|
L 1 &, NR(S),,
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a. The 1999 Duzce (Turkey) earthquake
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e Mw=7.1
e Strike-slip fault

e Led to destructive
damages of the city with
900 deaths and 3000

injuries

5 records with
epicentral distances less
than 125 Km are selected
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Selected stations and their properties for Duzce

Station Code Latitude | Longitud | Site Class R (Km) PGA-EW PGA-NS | PGV-EW PGV-NS

(N) e(E) (EC08) epi (cm/s?) (cm/s?) (cm/s) (cm/s)

Duzce DzZC | 40.8436 | 31.1488 D 9.314 520.41 328.03 86.54 54.53
Goynuk GYN | 40.3965 | 30.7830 D 55.163 22.17 25.79 5.84 4.49
iznik IZN | 40.4416 | 29.7168 D 123.67 20.06 21.25 1.97 2.27
izmit IZT | 40.7665 | 29.9172 C 100.7 16.41 18.73 2.27 1.73
Yarimca Petkim | YPT | 40.7639 | 29.7620 D 116.85 16.15 23.47 4.08 8.38




Results
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Station IZN
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Station YPT
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Comparison of observed vs. simulated GMs (FAS)
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Comparison of observed vs. simulated GMs (SDOF RS)
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Distribution of maximum story displacements due
to the real and simulated records— F2-352B

Station DZC Station GYN
10 T 10 T
5 5
50 100 150 200 05' 2 4 6 8 10 12
Station IZN Station IZT
— 10 T T T 10 T T T
E
@ 5 5
(]
I
2 4 6 8 10 1 2 3 4 5
Station YPT
10 : :
5l i —=— NS
—a—EW
—&— Synthetic
2 4 6 8 10

Displacement (mm)

Station| Real (mm) NR(roof)syn / NR(roof),
DzC | 154.7119 0.8950
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IZN 7.6369 1.2454
1ZT 4.0036 1.1392
YPT 8.3841 0.6570
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Distribution of maximum story displacements due

to the real and simulated records— F6-552B
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DzZC 160.5637 1.0482
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IZT 4.3898 1.5463
YPT 7.8122 0.7249

44



Distribution of maximum story displacements due
to the real and simulated records— F9-853B
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YPT 26.3956 0.9304
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F2-352B
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F6-552B

0.8
0.6
0.4

0.2

DZC GYN IZN IZT YPT

B MisfitFAS (Synthetic-SFF) # MisfitRS (Synthetic-SFF) = MisfitNR (Synthetic-SFF)

47



F9-8S3B
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b. The 2009 L'Aquila (Italy) earthquake
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Karimzadeh, Askan, Yakut and Ameri (2017)
Soil Dynamics and Earthquake Engineering

Mw=6.3
Normal fault

Caused severe
damage in epicentral
area with
approximately 300
casualties and total
damage cost of 2—3
billion Euros

7 near-fault records
are selected
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Selected stations and their properties for LAquila

it
ctation | coge | L2titude | Longitude C|Iases R, | PGA-EW | PGA-NS | PGV-EW | PGV-NS
(N) (E) (Km) | (em/s?) | (em/s?) | (em/s) | (em/s)
(EC08)
V. Aterno-
AQA | 42376 | 13.339 B 42 | 35046 | 34759 | 29.86 | 24.07
F. Aterno
Celano | CLN | 42.085 | 13.5207 A | 3179 | 7349 | 7657 | 461 | 6.56
Fiamignano | FMG | 42.268 | 13.1172 A | 2317 | 2012 | 2453 | 252 | 167
Gran Sasso | GSA | 42.421 | 13.5194 B | 14.15 | 131.88 | 139.02 | 9.63 | 7.41
Leonessa | LSS | 42.558 | 12.9689 A | 4062 | 921 7.61 071 | 0.72
Montereale | MTR | 42.524 | 13.2448 A | 2213 | 4217 | 5165 | 325 | 3.09
Sulmona | SUL | 42.09 | 13.9343 C | 5429| 2704 | 2453 | 269 | 2.82
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Simulated ground motions in region of interest

Using two alternative ground motion simulation methods:

a) Stochastic Finite-Fault Method: (Motazedian and Atkinson, 2005)
(Ugurhan et al. 2012, BSSA) Synthetic-SFF

b) Hybrid-Integral Composite Method: (Gallovi¢ and Brokesova, 2007)

Broadband synthetics

k-square kinematic rupture model, combining low frequency
coherent and high-frequency incoherent, Brune’s source radiation

(Ameri et. al, 2012, JGR) Synthetic-HIC
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Results
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Station CLN
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Comparison of observed vs. simulated GMs (FAS)
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Comparison of observed vs. simulated GMs (SDOF RS)
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Distribution of maximum story displacements due
to the real and S|mulated records— F2- 3SZB

Height(m)

Station AQA Statlon CLN
10 10
5k 5L
20 40 60 80 100 5 10 15 20 25
Station FMG Station GSA
10 T T T T
5 L
i 5 10 15 20 %5 10 20 30 40 50
Station LSS Station MTR
10 : : 10 :
5k 5L
% 2 6 8 10 12 i % 5 10 15 20
Station SUL —8—NS
—B—FW
—&— Synthetic-HIC (NS)
—&— Synthetic-HIC (EW)
—&— Synthetic-SFF

10

15
Displacement (mm)
Station Real (mm) |NR(roof) .+ cic.uic / NR(roof) , INR(roof)g .. ..ic.ser / NR(roof)
AQA 83.4356 0.6445 0.8636
CLN 11.8399 0.8217 2.0833
FMG 7.9211 1.0598 2.6653
GSA 18.3664 0.8525 2.5587
LSS 2.6454 0.7984 4.7990
MTR 15.9715 0.2278 0.8396
SUL 10.5884 0.2607 1.4028
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Distribution of maximum story displacements due to
the real and simulated records— F6-552B

Height(m)

Station AQA Station CLN
20 T T 20 T T
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—&— Synthetic-SFF
Displacement (mm)

Station| Real (mm) NR(rOOf)Synthetic-HIC / NR(roof), . NR(roof)Synthetic_SFF / NR(roof)
AQA | 93.3877 0.5647 0.6599
CLN 11.7848 0.8747 1.9194
FMG 8.3229 1.0271 2.2956
GSA | 17.0733 0.8500 2.6733
LSS 2.8434 0.9064 3.9042
MTR | 15.0158 0.2407 0.8564
SUL 9.4576 0.3892 1.4966 64




Distribution of maximum story displacements due to
the real and simulated records— F9-853B

40

Height(m)
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Displacement(mm)
Station| Real (mm) |NR(roof) . iic.uic / NR(roof) , INR(roof) . .c.ser / NR(roof) .

AQA | 97.0789 0.7268 1.0035

CLN 24.5896 0.7599 2.1033

FMG | 12.8187 1.1384 3.9559

GSA 23.6624 2.0547 3.9163

LSS 5.5325 0.9504 3.5644
MTR 15.2584 0.4192 1.2518
SUL 12.4225 0.7022 1.3886
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Main findings of NLTHA of MDOF structures

For Duzce, which is located on a shallow alluvial basin, simulated records
are found to be efficient to predict the real MDOF responses.

For UAquila mostly located on rock or stiff soil conditions:

Stochastic finite-fault model yields more conservative results.

Hybrid-integral-composite method mostly provides accurate results as it
covers the broadband frequency range. However, in some cases
underestimation of real responses are observed.

For both cases, frequency-dependent misfits governed the accuracy of
MDOF responses.

Simulated records that overestimate the nonlinear response could be
conservatively used for seismic design and assessment purposes of MDOF
structures.
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Part 3:
Distribution of seismic intensity maps (MMI)
for the eastern part of the NAFZ (Turkey)
using simulated records



OBJECTIVE

MMI distributions of potential scenario
events are studied on the eastern
segments of NAFZ through ground

motion simulations.



360 37‘) 384‘ 3‘)(' 4(’“ 4 l "

Askan, Karimzadeh and Bilal (2017), Chapter in a Book, AGU Book, Wiley
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Main Steps:

 Simulations along Eastern segments of NAFZ

1 Relationships between peak ground motion
parameters and felt intensity values

2 Applications in the study region

1 Conclusions
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Spatial distribution of the simulated (a) PGA, (b) PGV values of the 1992 Erzincan
earthquake in Erzincan region. The rectangle shows the Erzincan city center.
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Erzincan 1992 Earthquake; PGA (g)
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40

Spatial distribution of the simulated (a) PGA, (b) PGV values of the scenario
event Mw=7.0 in Erzincan region. The rectangle shows the Erzincan city center.
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Relationships between peak ground motion
parameters and felt intensity values

* To assess the spatial distribution of potential seismic damage:
Using the local correlations of Bilal and Askan, (2014)

* Correlations between: measured ground motion parameters (PGA
and PGV) and felt intensity values in terms of modified Mercalli
(MMI) scale

MM I=0.132 +3.884 log(PGA)
MM I= 2.673 + 4.340 log(PG V)
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Seismic intensity map of the 1992 Erzincan earthquake in terms of MMI scale in Erzincan
region using (a) the MMI-PGA correlation, the MMI-PGV correlation, (c) prepared by the
USGS ShakeMap software, (d) prepared in the field by Turkish Ministry of Construction
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Synthetic intensity map of the scenario event with Mw=7.0 in terms
of MMI scale in Erzincan region using (a) PGA-MMI (b) PGV-MMLI.
The rectangle shows the Erzincan city center.
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Contributions, conclusions and future work
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Summary and What is next:

e When a poor fit is obtained from a seismological point of view, a
similar outcome is observed from the engineering point of view.

* Simulated motions need to be carefully assessed for their
frequency, amplitude, and energy content before practical and
common use in earthquake engineering.

e |t is important to simulate realistic amplitudes over the entire
broadband frequency range of interest for earthquake
engineering purposes in order to cover all types of structures
with a range of fundamental periods.
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The accuracy of input parameters (fault models, source-time
functions, and velocity models) for GM simulation can be
increased.

To simulate lower frequency content, hybrid methods that
require complex source and wave velocity models are
necessary.

More investigations can be performed on the behavior of
other structural types such as bridges, tanks, tall buildings,
based isolated structures.

Use of simulated motions in different aspects of the
earthquake problem such as evacuation, casualty estimation,
insurance premium calculations.
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Homework

Prepare a total of 1-page summary on:

d.

Description of alternative ground motion simulation
techniques. (Provide a brief explanation on the type
of input parameters required for each method)

What are the limitations corresponding to
alternative ground motion simulation techniques?

As an engineer for design of a tall building with a
fundamental period of 3 seconds, which type of
simulation technique do you offer to perform time
history analysis? Why?
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